

DOUBLE DATA RATE (DDR) SDRAM

- PC1600 and PC2100 compatible
- $VDD = +2.5V \pm 0.2V$, $VDDQ = +2.5V \pm 0.2V$
- Bi-directional data strobe (DQS) transmitted/ received with data, i.e., source-synchronous data capture (x16 has two one per byte)
- Internal, pipelined double-data-rate (DDR) architecture; two data accesses per clock cycle
- Differential clock inputs (CK and CK#)
- Commands entered on each positive CK edge
- DQS edge-aligned with data for READs; center-aligned with data for WRITEs
- DLL to align DQ and DQS transitions with CK
- Four internal banks for concurrent operation
- Data mask (DM) for masking write data (x16 has two one per byte)
- Programmable burst lengths: 2, 4, or 8
- Auto precharge option
- Auto Refresh

Options:

- Longer lead TSOP for improved reliability (OCPL)
- 2.5V I/O (SSTL_2 compatible)

Designation:

Family	
SpecTek Memory	SAA
Configuration	
32 Meg x 4 (8 Meg x 4 x 4 banks)	32M4
16 Meg x 8 (4 Meg x 8 x 4 banks)	16M8
8 Meg x 16 (2 Meg x 16 x 4 banks)	8M16
Design ID	
DDR 128 Megabit Design	Yx6x
(Call SpecTek Sales for details on	
availability of "x" placeholders)	
Voltage and refresh	
2.5V, Auto Refresh	V4
2.5V, Self or Auto Refresh	R4
,	
Plastic Package – OCPL	
66-pin TSOP	TL
(400 mil width, 0.65mm pin pitch)	

Т	imi	ng ·	- C	ycle	T	ìme		
7	500	a	CI	- 2	5	$\overline{(\mathbf{DC})}$	1 (1

Г

7.5ns @ CL = 2.5 (PC2100) 10ns @ CL = 2.5 (PC1600) -75A -8A

Part number example: SAA16M8T95AV4TL-75A (For part numbers prior to December 2004, refer to page 13 for decoding.)

PIN ASSIGNMENT (TOP VIEW)										
66-Pin TSOP										
x4 x8 x7 VDD VDD VDD NC DQ0 D VDDQ VDDQ VDD NC NC NC DQ0 DQ1 D VSSQ VSSQ VSSQ NC NC NC NC DQ2 D VDDQ VDDQ VD NC NC NC RAS# RAS# <th>116 100 110 200 110 200 110 200 110 200 110 200 110 200 111 1200 201 111 1200 111 1111 1111 1111<th>66 11 11 12 12 66 11 11 12 12 12 66 11 11 12 12 12 66 11 11 12 12 12 62 11 11 12 12 12 61 11 12 12 12 12 59 58 17 11 12 12 50 54 11 12 12 12 51 11 12 12 12 12 52 51 12 12 12 14 43 11 11 14 14 14 43 12 14 14 14 14 40 13 14 14 14 14 41 14 14 14 14 14 43 13 14 14 14 14 40 13 14 14 14 14 4</th><th>16 x8 x4 15s V5s V5s V515 DQ7 NC V53Q V5sQ V5sQ V515 DQ7 NC V015 DQ7 NC V014 NC NC V013 DQ6 DQ3 V00Q V00Q V00Q V011 DQ5 NC V2010 NC NC V020 V00Q V00Q V020 NC NC K <t< th=""></t<></th></th>	116 100 110 200 110 200 110 200 110 200 110 200 110 200 111 1200 201 111 1200 1111 1111 1111 <th>66 11 11 12 12 66 11 11 12 12 12 66 11 11 12 12 12 66 11 11 12 12 12 62 11 11 12 12 12 61 11 12 12 12 12 59 58 17 11 12 12 50 54 11 12 12 12 51 11 12 12 12 12 52 51 12 12 12 14 43 11 11 14 14 14 43 12 14 14 14 14 40 13 14 14 14 14 41 14 14 14 14 14 43 13 14 14 14 14 40 13 14 14 14 14 4</th> <th>16 x8 x4 15s V5s V5s V515 DQ7 NC V53Q V5sQ V5sQ V515 DQ7 NC V015 DQ7 NC V014 NC NC V013 DQ6 DQ3 V00Q V00Q V00Q V011 DQ5 NC V2010 NC NC V020 V00Q V00Q V020 NC NC K <t< th=""></t<></th>	66 11 11 12 12 66 11 11 12 12 12 66 11 11 12 12 12 66 11 11 12 12 12 62 11 11 12 12 12 61 11 12 12 12 12 59 58 17 11 12 12 50 54 11 12 12 12 51 11 12 12 12 12 52 51 12 12 12 14 43 11 11 14 14 14 43 12 14 14 14 14 40 13 14 14 14 14 41 14 14 14 14 14 43 13 14 14 14 14 40 13 14 14 14 14 4	16 x8 x4 15s V5s V5s V515 DQ7 NC V53Q V5sQ V5sQ V515 DQ7 NC V015 DQ7 NC V014 NC NC V013 DQ6 DQ3 V00Q V00Q V00Q V011 DQ5 NC V2010 NC NC V020 V00Q V00Q V020 NC NC K <t< th=""></t<>							
	32 Meg x 4	16 Meg x 8	8 Meg x 16							
Configuration Refresh Count	8 ivieg x 4 x 4 banks	4 ivieg x 8 x 4 banks	2 ivieg x 16 x 4 banks							
Row Addressing	4K 4K (A0–A11)	4K 4K (A0–A11)	4K 4K (A0–A11)							
Bank Addressing	4(BA0, BA1)	4(BA0, BA1)	4(BA0, BA1)							

GENERAL DESCRIPTION

The 128Mb DDR SDRAM is a high-speed CMOS, dynamic random-access memory containing 134,217,728 bits. It is internally configured as a quad-bank DRAM.

The 128Mb DDR SDRAM uses a double data rate architecture to achieve high-speed operation. The double data rate architecture is essentially a 2n-prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O pins. A single read or write access for the 128Mb DDR SDRAM effectively consists of a single 2n-bit wide, one-clock-cycle data transfer at the internal DRAM core and two corresponding *n*-bit wide, one-half-clock-cycle data transfers at the I/O pins.

A bi-directional data strobe (DQS) is transmitted externally, along with data, for use in data capture at the receiver. DQS is a strobe transmitted by the DDR SDRAM during READs and by the memory controller during WRITES. DQS is edge-aligned with data for READs and center-aligned with data for WRITEs. The x16 offering has two data strobes, one for the lower byte and one for the upper byte.

The 128Mb DDR SDRAM operates from a differential clock (CK and CK#); the crossing of CK going HIGH and CK# going LOW will be referred to as the positive edge of CK. Commands (address and control signals) are registered at every positive edge of CK. Input data is registered on both edges of DQS, and output data is referenced to both edges of DQS, as well as to both edges of CK.

Read and write accesses to the DDR SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed. The address bits registered coincident with the READ or WRITE command are used to select the bank and the starting column location for the burst access.

The DDR SDRAM provides for programmable READ or WRITE burst lengths of 2, 4, or 8 locations. An auto precharge function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst access.

As with standard SDR SDRAMs, the pipelined, multibank architecture of DDR SDRAMs allows for concurrent operation, thereby providing high effective bandwidth by hiding row precharge and activation time.

An auto refresh mode is provided, along with a powersaving power-down mode. All inputs are compatible with the JEDEC Standard for SSTL_2. All full drive strength outputs are SSTL_2, Class II compatible.

- **NOTE 1:** The functionality and the timing specifications discussed in this data sheet are for the DLL-enabled mode of operation.
- NOTE 2: Throughout the data sheet, the various figures and text refer to DQs as "DQ." The DQ term is to be interpreted as any and all DQ collectively, unless specifically stated otherwise.
 Additionally, the x16 is divided in to two bytes the lower byte and upper byte. For the lower byte (DQ0 through DQ7) DM refers to LDM and DQS refers to LDQS; and for the upper byte (DQ8 through DQ15) DM

ABSOLUTE MAXIMUM RATINGS*

VDD Supply Voltage
Relative to Vss1V to +3.6V
VDDQ Supply
Voltage Relative to Vss1V to +3.6V
VREF and Inputs Voltage
Relative to Vss1V to +3.6V
I/O Pins Voltage
Relative to Vss0.5V to VddQ +0.5V
Operating Temperature, TA (ambient) 25°C to +70°C
Storage Temperature (plastic)55°C to +150°C
Power Dissipation
Short Circuit Output Current

refers to UDM and DQS refers to UDQS.

Disclaimer:

Except as specifically provided in this document, SpecTek makes no warranties, expressed or implied, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose.

Any claim against SpecTek must be made within 1 year from the date of shipment from SpecTek, and SpecTek has no liability thereafter. Any liability is limited to replacement of the defective items or return of amounts paid for defective items (at buyer's election). In no event will SpecTek be responsible for special, indirect, consequential or incidental damages, even if SpecTek has been advised for the possibility of such damages. SpecTek's liability from any cause pursuant to this specification shall be limited to general monetary damages in an amount not to exceed the total purchase price of the products covered by this specification, regardless of the form in which legal or equitable action may be brought against SpecTek.

DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS

 $(25^{\circ}C \le T_A \le +70^{\circ}C; V_{DD} = +2.5V \pm 0.2V, V_{DD}Q = +2.5V \pm 0.2V)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vdd	2.3	2.7	V	41
I/O Supply Voltage	VddQ	2.3	2.7	V	41, 44
I/O Reference Voltage	VREF	0.49 X VDDQ	0.51 X VDDQ	V	6,44
I/O Termination Voltage (system)	Vtt	VREF - 0.04	VREF - 0.04	V	7,44
Input High (Logic 1) Voltage	VIH (DC)	$V_{REF} + 0.15$	VDD + 0.3	V	28
Input Low (Logic 0) Voltage	VIL (DC)	-0.3	Vref - 0.15	V	28
Clock Input Voltage Level; CK and CK#	VIN	-0.3	VDDQ + 0.3	V	
Clock Input Differential Voltage; CK and CK#	VID	0.36	VDDQ + 0.6	V	8
Clock Input Crossing Point Voltage; CK and CK#	VIX	1.15	1.35	V	9
INPUT LEAKAGE CURRENT	II	-2	2	μA	
Any input, $0V \le V_{IN} \le V_{DD}$, V_{REF} pin $0V \le VIN \le 1.35V$					
(All other pins not under test $= 0V$)					
OUTPUT LEAKAGE CURRENT	Ioz	-7	7	μA	
(DQs are disabled; $0V \le VOUT \le VDDQ$)					
OUTPUT LEVELS:	Іон	-16.8		mA	37, 39
Full drive option - x4, x8, x16	Ιοι	16.8		mΔ	
High Current (Vout = VddQ-0.373V, minimum VREF, minimum	IOL	10.0			
VTT)					
Low Current (Vout = 0.373V, maximum Vref, maximum Vtt)					
OUTPUT LEVELS: Reduced drive option - x16 only	IOHR	-9		mA	38, 39
High Current (Vout = VDDQ-0.763V, minimum VREF, minimum	LOI R	9		mA	
VTT)					
Low Current (Vout = 0.763V, maximum Vref, maximum Vtt)					

3

AC INPUT OPERATING CONDITIONS

 $(25^{\circ}C \le T_A \le + 70^{\circ}C; V_{DD} = +2.5V \pm 0.2V, V_{DD}Q = +2.5V \pm 0.2V)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNIT	NOTES
				S	
Input High (Logic 1) Voltage	Vih (ac)	Vref + 0.310		V	14, 28,
					40
Input Low (Logic 0) Voltage	VIL (AC)		Vref - 0.310	V	14, 28,
					40
Clock Input Differential Voltage; CK and CK#	VID (AC)	0.7	VDDQ + 0.6	V	8
Clock Input Crossing Point Voltage; CK and CK#	VIX (AC)	0.5 X VDDQ - 0.2	0.5 X VDDQ + 0.2	V	9
I/O Reference Voltage	VREF (AC)	0.49 X VDDQ	0.51 X VDDQ	V	6

CAPACITANCE (x4, x8)

 $(25^{\circ}C \le T_A \le +70^{\circ}C; V_{DD}Q = +2.5V \pm 0.2V, V_{DD} = +2.5V \pm 0.2V)$

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Delta Input/Output Capacitance: DQs, DQS, DM	DCIO		0.50	pF	24
Delta Input Capacitance: Command and Address	DCI1		0.50	pF	29
Delta Input Capacitance: CK, CK#	DCI2		0.25	pF	29
Delta Input Capacitance: DQs, DQS, DM	Cio	4.0	5.0	pF	
Input Capacitance: Command and Address	CI1	2.0	3.0	pF	
Input Capacitance: CK, CK#	CI2	2.0	3.0	pF	
Input Capacitance: CKE	CI3	2.0	3.0	pF	

IDD SPECIFICATIONS AND CONDITIONS (x4, x8)

 $(25^{\circ}C \le T_A \le +70^{\circ}C; V_{DD}Q = +2.5V \pm 0.2V, V_{DD} = +2.5V \pm 0.2V)$

PARAMETER/CONDITION	SYMBOL	-75	-8	UNITS	NOTES
OPERATING CURRENT: One bank; Active-Precharge; ^t RC = ^t RC (MIN);	IDD0	105	100	mA	22, 48
^t CK = ^t CK (MIN); DQ, DM, and DQS inputs changing once per clock					
cycle; Address and control inputs changing once every two clock cycles;					
OPERATING CURRENT: One bank; Active-Read-Precharge; Burst = 2;	IDD1	120	115	mA	22, 48
^t RC = ^t RC (MIN); ^t CK = ^t CK (MIN); IOUT = 0mA; Address and control					
inputs changing once per clock cycle					
PRECHARGE POWER-DOWN STANDBY CURRENT: All banks idle;	Idd2p	10	10	mA	23, 32,
Power-down mode; ^t CK = ^t CK(MIN); CKE=LOW;					50
IDLE STANDBY CURRENNT: CS# = HIGH; All banks idle; ^t CK = ^t CK	Idd2n	50	45	mA	51
(MIN); CKE = HIGH; Address and other control inputs changing once per					
clock cycle. VIN = VREF for DQ, DQS, and DM					
ACTIVE POWER-DOWN STANDBY CURRENT: One bank active;	IDD3p	18	18	mA	23, 32,
Power-down mode; ${}^{t}CK = {}^{t}CK$ (MIN); CKE = LOW					50
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One bank;	Idd3n	50	45	mA	22
Active-Precharge; ${}^{t}RC = {}^{t}RAS (MAX)$; ${}^{t}CK = {}^{t}CK (MIN)$; DQ, DM, and					
DQS inputs changing twice per clock cycle; Address and other control					
inputs changing once per clock cycle.					
OPERATING CURRENT: Burst = 2; Reads; Continuous burst; One bank	Idd4r	120	110	mA	22, 48
active; Address and control inputs changing once per clock cycle; ^t CK =					
^{t}CK (MIN); IOUT = 0mA					
OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One bank	IDD4W	120	110	mA	22
active; Address and control inputs changing once per clock cycle; ^t CK =					
^t CK (MIN); DQ, DM, and DQS inputs changing twice per clock cycle					
AUTO REFRESH CURRENT ^t RC = tRFC (MIN)	IDD5	250	225	mA	22, 50
SELF REFRESH CURRENT (Part number 'R' only)	Idd7	2	2	mA	11
OPERATING CURRENT: Four bank interleaving READs ($BL = 4$) with	IDD8	330	285	mA	22, 49
auto precharge, ${}^{t}RC = {}^{t}RC$ (MIN); ${}^{t}CK = {}^{t}RC$ (MIN); Address and control					
inputs change only during Active, READ, or WRITE commands.					

5

CAPACITANCE (x16)

 $(25^{\circ}C \le T_A \le +70^{\circ}C; V_{DD}Q = +2.5V \pm 0.2V, V_{DD} = +2.5V \pm 0.2V)$

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Delta Input/Output Capacitance: DQ0 – DQ7, LDQS, LDM	DCIOL		0.50	pF	24
Delta Input/Output Capacitance: DQ8-DQ15, UDQS, UDM	DCIOU		0.50	pF	24
Delta Input Capacitance: Command and Address	DCI1		0.50	pF	29
Delta Input Capacitance: CK, CK#	DCI2		0.25	pF	29
Input/Output Capacitance: DQs, LDQS, UDQS, LDM, UDM	Сю	4.0	5.0	pF	
Input Capacitance: Command and Address	CI1	2.0	3.0	pF	
Input Capacitance: CK, CK#	CI2	2.0	3.0	pF	
Input Capacitance: CKE	CI3	2.0	3.0	pF	

IDD SPECIFICATIONS AND CONDITIONS (x16)

 $(25^{\circ}C \le T_A \le +70^{\circ}C; V_{DD}Q = +2.5V \pm 0.2V, V_{DD} = +2.5V \pm 0.2V)$

PARAMETER/CONDITION		SYMBOL	-75	-8	UNITS	NOTES
OPERATING CURRENT: One bank; Active-Precharge; ^t RC	$C = {}^{t}RC (MIN);$	Idd0	115	105	mA	22, 48
^t CK = ^t CK (MIN); DQ, DM, and DQS inputs changing once per clock						
cycle; Address and control inputs changing once every two cl	ock cycles;					
OPERATING CURRENT: One bank; Active-Read-Precharg	ge; Burst = 2;	IDD1	140	115	mA	22, 48
${}^{t}RC = {}^{t}RC$ (MIN); ${}^{t}CK = {}^{t}CK$ (MIN); IOUT = 0mA; Address a	nd control					
inputs changing once per clock cycle						
PRECHARGE POWER-DOWN STANDBY CURRENT: A	ll banks idle;	IDD2p	10	10	mA	23, 32,
Power-down mode; ${}^{t}CK = {}^{t}CK(MIN)$; CKE=LOW;						50
IDLE STANDBY CURRENNT: CS# = HIGH; All banks idle	e; CK = CK	Idd2n	50	45	mA	51
(MIN); CKE = HIGH; Address and other control inputs change	ging once per					
clock cycle. $VIN = VREF$ for DQ, DQS, and DM						
ACTIVE POWER-DOWN STANDBY CURRENT: One bar	nk active;	IDD3p	18	18	mA	23, 32,
Power-down mode; ${}^{t}CK = {}^{t}CK$ (MIN); CKE = LOW						50
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIG	GH; One bank;	Idd3n	50	45	mA	22
Active-Precharge; ${}^{t}RC = {}^{t}RAS$ (MAX); ${}^{t}CK = {}^{t}CK$ (MIN); DO	Q, DM, and					
DQS inputs changing twice per clock cycle; Address and other	er control					
inputs changing once per clock cycle.						
OPERATING CURRENT: Burst = 2; Reads; Continuous bu	rst; One bank	Idd4r	170	160	mA	22, 48
active; Address and control inputs changing once per clock cy	ycle; ^t CK =					
^{t}CK (MIN); IOUT = 0mA						
OPERATING CURRENT: Burst = 2; Writes; Continuous bu	ırst; One bank	IDD4W	150	145	mA	22
active; Address and control inputs changing once per clock cy	ycle; ^t CK =					
^t CK (MIN); DQ, DM, and DQS inputs changing twice per clock cycle						
AUTO REFRESH CURRENT ^t RC =	tRFC (MIN)	IDD5	255	225	mA	22, 50
SELF REFRESH CURRENT (Part number 'R' only)		Idd7	2	2	mA	11
OPERATING CURRENT: Four bank interleaving READs (E	BL = 4) with	IDD8	330	285	mA	22, 49
auto precharge, ${}^{t}RC = {}^{t}RC$ (MIN); ${}^{t}CK = {}^{t}RC$ (MIN); Address	s and control					
inputs change only during Active, READ, or WRITE comma	nds.					

128Mb: x4, x8, x16 DDR SDRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(25^{\circ}C \le T_A \le +70^{\circ}C; V_{DD}Q = +2.5V \pm 0.2V, V_{DD} = +2.5V \pm 0.2V)$

AC CHARACTERISTICS			-75		-8			
PARAMETER		SYMBOL	MIN	MAX	MIN	MAX	UNITS	NOTES
Access window of DQs from CK/CK	<i>#</i>	^t AC	-0.75	+0.75	-0.8	+0.8	ns	
CK high-level width		^t CH	0.45	0.55	0.45	0.55	^t CK	30
CK low-level width		^t CL	0.45	0.55	0.45	0.55	^t CK	30
Clock cycle time	CL = 2.5	^t CK (2.5)	7.5	12	10	12	ns	52
		, , ,						
DQ and DM input hold time relative	to DQS	^t DH	0.5		0.6		ns	26, 31
DQ and DM input setup time relative	to DQS	^t DS	0.5		0.6		ns	26, 31
DQ and DM input pulse width (for each and the second secon	ach input)	^t DIPW	1.75		2		ns	31
Access window of DQS from CK/Ck	<u></u> Κ#	^t DQSCK	-0.75	+0.75	-0.8	+0.8	ns	
DQS input high pulse width		^t DQSH	0.35		0.35		^t CK	
DQS input low pulse width		^t DQSL	0.35		0.35		^t CK	
DQS-DQ skew, DQS to last DQ vali	d, per group, per	^t DQSQ		0.5		0.6	ns	25, 26
access								ŗ
DQS-DQ skew, first DQS to last DQ	valid, per access	^t DQSQA		0.7		0.8	ns	36
Write command to first DQS latching	g transition	^t DQSS	0.75	1.25	0.75	1.25	^t CK	
DQS falling edge to CK rising - setu	p time	^t DSS	0.2		0.2		^t CK	
DQS falling edge from CK rising – h	old time	^t DSH	0.2		0.2		^t CK	
Half clock period		^t HP	^t CH,		^t CH,		ns	34
			^t CL		^t CL			
Data-out high-impedance window fro	om CK/CK#	^t HZ	-0.75	+0.75	-0.8	+0.8	ns	18
Data-out low-impedance window fro	m CK/CK#	^t LZ	-0.75	+0.75	-0.8	+0.8	ns	18
Address and control input hold time	(fast slew rate)	^t IH _f	.90		1.1		ns	14
Address and control input setup time	(fast slew rate)	^t IS _f	.90		1.1		ns	14
Address and control input hold time	(slow slew rate)	^t IH _s	1		1.1		ns	14
Address and control input setup time	(slow slew rate)	^t IS _s	1		1.1		ns	14
LOAD MODE REGISTER comman	d cycle time	^t MRD	15		16		ns	
DQ-DQS hold, DQS to first DQ to g	o non-valid, per	^t QH	tHP -		tHP -		ns	25, 26
access			tQHS		tQHS			
Data hold skew factor		^t QHS		0.75		1	ns	
ACTIVE to PRECHARGE command	1	^t RAS	45	16,000	50	16,000	ns	35
ACTIVE to READ with Auto precha	rge command	^t RAP					ns	46
ACTIVE to ACTIVE/AUTO REFRESH command		^t RC	65		70		ns	
period								
AUTO REFRESH command period		^t RFC	75		80		ns	50
ACTIVE to READ or WRITE delay		^t RCD	20		20		ns	
PRECHARGE command period		^t RP	20		20		ns	
DQS read preamble		^t RPRE	0.9	1.1	0.9	1.1	^t CK	42
DQS read postamble		^t RPST	0.4	0.6	0.4	0.6	^t CK	
ACTIVE bank a to ACTIVE bank b	command	^t RRD	15		15		ns	

7

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS,

(continued)

AC CHARACTERISTICS		-75		-8			
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	UNITS	NOTES
DQS write preamble	^t WPRE	0.25		0.25		^t CK	
DQS write preamble setup time	^t WPRES	0		0		ns	20, 21
DQS write postamble	^t WPST	0.4	0.6	0.4	0.6	^t CK	19
Write recovery time	^t WR	15		15		ns	
Internal WRITE to READ command delay	^t WTR	1		1		^t CK	
Data valid output window	na	tQH -	tDQSQ	tQH - tDQSQ		ns	25
REFRESH to REFRESH command interval	^t REFC		140.6		140.6	μs	23
Average periodic refresh interval	^t REFI		15.6		15.6	μs	23
Terminating voltage delay to Vdd	^t VTD	0		0		ns	
Exit SELF REFRESH to non-READ command	^t XSNR	75		80		ns	
(Part number R only)							
Exit SELF REFRESH to READ command	^t XSRD	200		200		^t CK	
Exit SELF REFRESH to non-READ command (Part number R only) Exit SELF REFRESH to READ command (Part number R only)	^t XSNR ^t XSRD	75 200		80 200		ns ^t CK	

NOTES

- 1. All voltages referenced to Vss.
- Tests for AC timing, IDD, and electrical AC and DC characteristics may be conducted at nominal reference/supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage range specified.
- 3. Outputs measured with equivalent load: properly initialized, and is averaged at the defined cycle rate.

- 4. AC timing and IDD tests may use a VIL- to-VIH swing of up to 1.5V in the test environment, but input timing is still referenced to VREF (or to the crossing point for CK/CK#), and parameter specifications are guaranteed for the specified AC input levels under normal use conditions. The minimum slew rate for the input signals used to test the device is 1V/ns in the range between VIL(AC) and VIH(AC).
- 5. The AC and DC input level specifications areas defined in the SSTL_2 Standard (i.e., the receiver will effectively switch as a result of the signal crossing the AC input level, and will remain in that state as long as the signal does not ring back above [below] the DC input LOW [HIGH] level).
- 6. VREF is expected to equal VDDQ/2 of the transmitting device and to track variations in the DC level of the same. Peak-to-peak noise (noncommon mode) on VREF may not exceed ±2 percent of the DC value. Thus, from VDDQ/2, VREF is allowed ±25mV for DC error and an additional ±25mV for AC noise.
- 7. VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF and must track variations in the DC level of VREF.
- 8. VID is the magnitude of the difference between the input level on CK and the input level on CK#.
- 9. The value of Vix is expected to equal VddQ/2 of the transmitting device and must track variations in the DC level of the same.
- 10. Idd is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time at CL = 2.5 for -7.5 and -8 with the outputs open.

128Mb: x4, x8, x16 DDR SDRAM

- 11. Enables on-chip refresh and address counters.
- 12. IDD specifications are tested after the device is properly initialized, and is averaged at the defined cycle rate.
- 13. This parameter is sampled. VDD = $+2.5V \pm 0.2V$, VDDQ = $+2.5V \pm 0.2V$, VREF = Vss, f = 100 MHz, T_A = 25°C, VOUT(DC) = VDDQ/2, VOUT (peak to peak) = 0.2V. DM input is grouped with I/O pins, reflecting the fact that they are matched in loading.
- 14. Command/Address input slew rate = 0.5V/ns. For -7 and -75 with slew rates 1V/ns and faster, 'IS and 'IH are reduced to 900ps. If the slew rate is less than 0.5V/ns, timing must be derated: 'IS has an additional 50ps per each 100mV/ns reduction in slew rate from the 500mV/ns. 'IH has 0ps added, that is, it remains constant. If the slew rate exceeds 4.5V/ns, functionality is uncertain.
- 15. The CK/CK# input reference level (for timing referenced to CK/CK#) is the point at which CK and CK# cross; the input reference level for signals other than CK/CK# is VREF.
- 16. Inputs are not recognized as valid until VREF stabilizes. Exception: during the period before VREF stabilizes, $CKE \le 0.3 \text{ x VDDQ}$ is recognized as LOW.
- 17. The output timing reference level, as measured at the timing reference point indicated in Note 3, is VTT.
- 18. ^tHZ and ^tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referenced to a specific voltage level, but specify when the device output is no longer driving (HZ) or begins driving (LZ).
- 19. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but system performance (bus turnaround) will degrade accordingly.
- 20. This is not a device limit. The device will operate with a negative value, but system performance could be degraded due to bus turnaround.
- 21. It is recommended that DQS be valid (HIGH or LOW) on or before the WRITE command. The case shown (DQS going from High-Z to logic LOW) applies when no WRITEs were previously in progress on the bus. If a previous WRITE was in progress, DQS could be HIGH during this time, depending on tDQSS.

128Mb: x4, x8, x16 DDR SDRAM

NOTES, continued

- 22. MIN (^tRC or ^tRFC) for IDD measurements is the smallest multiple of ^tCK that meets the minimum absolute value for the respective parameter. ^tRAS (MAX) for IDD measurements is the largest multiple of ^tCK that meets the maximum absolute value for ^tRAS.
- 23. The refresh period 64ms. This equates to an average refresh rate of 15.625μs. However, an AUTO REFRESH command must be asserted at least once every 140.6μs; burst refreshing or posting by the DRAM controller greater than eight refresh cycles is not allowed.
- 24. The I/O capacitance per DQS and DQ byte/group will not differ by more than this maxi-or mum amount for any given device.
- 25. The valid data window is derived by achieving other specifications ^tHP (^tCK/2), ^tDQSQ, and ^tQH (^tQH = ^tHP ^tQHS). The data valid window derates directly proportional with the clock duty cycle and a practical data valid window can be derived. The clock is allowed a maximum duty cycle variation of 45/55. Functionality is uncertain when operating beyond a 45/55 ratio. The data valid window derating curves are provided below for duty cycles ranging between 50/50 and 45/55.
- 26. Referenced to each output group: x4 = DQS with DQ0-DQ3; x8 = DQS with DQ0-DQ7; x16 = LDQS with DQ0-DQ7 and UDQS with DQ8-DQ15.
- 27. This limit is actually a nominal value and does not result in a fail value. CKE is HIGH during REFRESH command period (^tRFC [MIN]) else CKE is LOW (i.e., during standby).
- 28. To maintain a valid level, the transitioning edge of the input must:
 - a) Sustain a constant slew rate from the Current AC level through to the target AC level, VIL(AC) VIH(AC).
 - b) Reach at least the target AC level.
 - c) After the AC target level is reached, continue to maintain at least the target DC level, VIL(DC) or VIH(DC).
- 29. The Input capacitance per pin group will not differ by more than this maximum amount for any given device.
- 30. CK and CK# input slew rate must be >1V/ns.

- 31. DQ and DM input slew rates must not deviate from DQS by more than 10%. If the DQ/DM/DQS slew rate is less than 0.5V/ns, timing must be derated: 50ps must be added to 'DS and 'DH for each 100mv/ns reduction in slew rate. If slew rate exceeds 4V/ns, functionality is uncertain.
- 32. VDD must not vary more than 4% if CKE is not active while any bank is active.
- 33. The clock is allowed up to ± 150 ps of jitter. Each timing parameter is allowed to vary by the same amount.
- 34. ^tHP min is the lesser of ^tCL minimum and ^tCH minimum actually applied to the device CK and CK/ inputs, collectively during bank active.
- 35. READs and WRITEs with auto precharge are not allowed to be issued until ^tRAS (MIN) can be satisfied prior to the internal precharge command being issued.
- 36. Applies to x16 only. First DQS (LDQS or UDQS) to transition to last DQ (DQ0-DQ15) to transition valid. Initial JEDEC specifications suggested this to be same as ^tDQSQ.
- 37. Note 37 is not used.
- 38. Note 38 is not used.
- 39. Note 39 is not used.
- 40. VIH overshoot: VIH(MAX) = VDDQ+1.5V for a pulse width \leq 3ns and the pulse width can not be greater than 1/3 of the cycle rate. VIL undershoot: VIL(MIN) = -1.5V for a pulse width \leq 3ns and the pulse width can not be greater than 1/3 of the cycle rate.
- 41. VDD and VDDQ must track each other.
- 42. Note 42 is not used.
- 43. Note 43 is not used.
- 44. During initialization, VddQ, Vtt, and Vref must be equal to or less than Vdd + 0.3V. Alternatively, Vtt may be 1.35V maximum during power up, even if Vdd /VddQ are 0 volts, provided a minimum of 42 ohms of series resistance is used between the Vtt supply and the input pin.

128Mb: x4, x8, x16 **DDR SDRAM**

NOTES, continued

- 45. Note 45 is not used.
- 46. $^{t}RAP > ^{t}RCD$.
- 47. Note 47 is not used.
- 48. Random addressing changing 50% of data changing at every transfer.
- 49. Random addressing changing 100% of data changing at every transfer.
- command is executed. That is, from the time the AUTO

REFRESH command is registered, CKE must be active at each rising clock edge, until ^tREF later.

51. IDD2N specifies the DQ, DQS, and DM to be driven to a valid high or low logic level. IDD2Q is similar to IDD2F except IDD2Q specifies the address and control inputs to remain stable. Although IDD2F, IDD2N, and IDD2Q are similar, IDD2F is "worst case."

50. CKE must be active (high) during the entire time a refresh Whenever the operating frequency is altered, not

including jitter, the DLL is required to be reset.

This is followed by 200 clock cycles.

66-PIN PLASTIC TSOP (400 mil)

- **NOTE:** 1. All dimensions in millimeters $\frac{MAX}{MIN}$ or typical here noted.
 - 2. Package width and length do not include mold protrusion; allowable mold protrusion is 0.25mm per side.

PART NUMBERS FOR PRODUCT PRIOR TO DECEMBER 2004

OPTIONS

MARKING

•	Configuration	
	32 Meg x 4 (8 Meg x 4 x 4 banks)	S40032
	16 Meg x 8 (4 Meg x 8 x 4 banks)	S80016
	8 Meg x 16 (2 Meg x 16 x 4 banks)	S16008
•	Voltage and refresh	
	2.5V, Auto Refresh	VH
	2.5V, Self or Auto Refresh	RH
•	Parent Device Configuration	
	32 Meg x 4	8
	16 Meg x 8	7
	8 Meg x 16	9
•	Plastic Package – OCPL	
	66-pin TSOP	TW
	(400 mil width, 0.65mm pin pitch)	
•	Timing – Cycle Time	
	7.5ns @ CL = 2.5 (PC2100)	-75A
	10ns @ CL = 2.5 (PC1600)	-8A

(Example part number: S80016VH7TW-75A)

http://www.spectek.com/menus/part_guides.asp